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Absfracl-Motivated by the applications of flexible fingers 
(capable of offering large deflections to accommodate object 
variations) in grasping, we present several computational 
models that characterize the large deflection of a flexible fmger 
(beam). Specifically, we develop analytical methods for 
analyzing the design of cantilever-like fingers or elements of a 
machine that is designed primarily to support forces acting 
perpendicular to the axis of the member. Both uniform and 
non-uniform beams are considered. The methods were 
numerically validated by comparing the computed results 
against those obtained using the closed-form solutions, where 
exact solutions are available for fingers with a uniform cross- 
section. To extend the closed-form solution for predicting the 
shape of a non-uniform finger, we compute numerically an 
effective EI that approximates the non-uniform finger as a 
uniform finger at the point of contact. The approximate model 
has been examined experimentally. The results show excellent 
agreement. We expect that the methods presented here will 
have other engineering applications. 

Inda  tern- grasping, flexible fingers, beam theory, handling 

I. INTRODUCTION 
Traditionally, designers of mechanical components are 

used to the assumption of rigid bodies and rigid joints. As a 
result, elastic deformation is often seen as something that would 
lower the performance of a machine. However, many real life 
examples demonstrate that flexible-beam-like compliance can 
he an advantage in many applications. 

Beam theory bas played an important role in the 
development of flexible fingers, flexural joints, compliant 
mechanisms, p-motion manipulator, and nano-positioning- 
stages. Most of these devices have been designed upon the 
concept of the English clockm&er John Harrison (1759), who 
replaced the revolute joints with flexural pivots to remove joint 
friction for his chronometer. Another good application of 
cantilevers is its use in the atomic force dcroscope (AFM) 
[Tortonese, 1991; Baselt, 1993; Mime et al., 1998; Harley 
[ZOOO]. Recently, cantilevers are widely used in the Micro- 
- Electro-Mechanical System (MEMS) technology, which takes 
advantage of the state-of-art integrated sircuit (IC) fabrication 
techniques from the semiconductor industry. Some of these 
examples include the electrostatic-MEM switch [De Los 
Santos, 19971, the p-mirror/p-laser arrays proposed by Cheng 
el al. [I9971 for replacing conventional laser printing 
mechanisms to print faster and eliminate synchronization 
problems that improve image quality while lower production 
costs, and the micro-machined resonant magnetic field sensor 
[Tbierry el al., 20011. More recently, p-cantilevers have also 
found their uses in fast growing bio-medical research. Wu ef al. 

[2001] developed a cantilevered microscopic chip, no bigger 
than a hair and coated with antibodies, for detecting prostate 
secific gitigen @SA) in human blood. The cantilevered chip 
bends like a diving hoard as PSA sticks to the antibodies, but 
does not bend when it exposes to different proteins found in 
human blood serum (human plasminogen (HP) and human 
serum albumin @SA) because these molecules do not bind to 
the antibody to PSA. Most of these studies, however, were 
based on a linearized form of the beam equation (or the Euler- 
Bernoulli equation) to simplify analyses and thus, are limited to 
smalldeflection applications. 

Flexible fingers have also been widely used in poulhy 
industry. Primary applications of flexible fingers (or beams) are 
for removing feathers from bud carcasses, for singulating buds 
into a single file to facilitate electronic counting and 
transportation from f m s  to the processing plants, and more 
recently for high-speed repetitive grasping of live objects [Lee, 
20001, where impacts on objects are intolerable. Flexible beam 
undergoing large deflections also finds its usage in sports field 
for vaulting simulation [Ganslen, 1979; Linthorne, 20001, 
where the flexible pole acts as an energy transformer that 
converts the kinetic energy of  the vaulter into the potential 
energy in the vaulting process. The advantages of flexible 
fingers are under-exploited (particularly for grasping), 
however, because their design involves complicated analysis. 

The geomeeical solution to the '2d order, nonlinear 
differential equation that characterizes the large deflection of 
flexible beams can be found in [Frisch-Fay, 19621 hut the 
derivation of this closed-form solution is rather cumbersome 
and is valid for beams with a uniform cross-section. Numerical 
methods, such as finite element (FE) method, are capable of 
solving more general problems Fang ,  19731. An alternative 
solution approach is to replace tbe flexible beam by two rigid 
links connected by a "characteristic pivot" with a torsion- 
spring. Howell and Midha [I9951 used this pseudo-rigid-body 
(PRB) model to analyze compliant mechanisms with small- 
length flexural pivots. Since the effective stifiess of the 
flexible beam is dependent on the location at which the force 
acts, the PRB model is limited to analyses where a known force 
applies at a specified point. To explore the use of flexible 
fingers for grasping live objects, Lee [I9991 [Lee et 01. 2001] 
extended the solution of Frisch-Fay [I9621 to predict the 
contact point between a flexible finger and an ellipsoid. 
However, most of the techniques available to date are limited to 
beams with a uniform cross-section. 

We present here three computational methods for 
predicting the deflected shape of a general finger with a non- 
uniform flexural rigidity to allow for broader applications. The 
remainder of this paper is organized as follows: In Section E, 
models for predicting the shape of a deflected finger are 

. .  
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presented. The models are compared in Section 111. Sertion N 
offers a method to compute an effective El, which provides a 
means to extend the closed-form solution for solving the shape 
of a non-uniform finger. Conclusions are given in Section V. 

n. FLEXIBLE BEAM MODEL 
Consider a beam (which has a small y and z dimensions as 

compared to the x dimension) with one end clamped as shown 
in Figure I, where the force F acts at an angle a at C (x, yJ; 
Q(x, y) is an arbitrary point on the deflected finger; s and L are 
the arc lengths from the finger base to Q(x. y )  and C (xn j4 
respectively; and yl. is the slope of the finger at the contact. 

I x a  

Y (  
Figure 1 Schematics illustrating the parameters of the beam 

The bending moment Mat Q(x,y) can he shown to be 

(1) dv M = EI(s)- = Fsin a ( x ,  - x) + Fcosa(y, - y )  
Lfc - 

where y /  is the angular deflection; E is the Young's module of 
the material; Z is the 2" order moment of area of the beam. 
Equation ( I )  can he written as win,  20031 

where - -  u=s/L€[O,l]  (2a) 
and S=a+y  s[a,a+yl0] (2b) 
To solve for S (hence v) in Equation (2), Z(u) must be in closed 
form (or by means of a lookup table), and that the I"-order 
derivative of I(u) emsts and is a continuous function of u. 

II.1 SmaU Deflection of a Uniform Beam 
The curvature at the point considered is given by 

, ~- I >  

For a small deflection such that (dy/dx)' <<I, the curvature in 
Equation (I) can he approximated by the 2nd derivative of y .  
 his assumption also implies that the 2"' term on the right- 
hand-side ofEquation (1) is negligible, which leads to 

d z y  
d r 2  

El(x)- = Fsin a ( L  -x) , y(x = 0) = y ' (x  = 0) = 0 

For a uniform beam, the solution to the above classical, linear 
moment-curvature equation is given by 

FL' sin a 
2EI 

(4) 

II.2 Large Deflection of a Uniform Beam 
Equation (4) is not valid for largedeflection applications. 

For a beam with a uniform cross-section, Equation (2) reduces 
to a form of Newton's equation: 

~ 
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( 5 )  

S(u = 0) = a and S'(u = 1) = [de/ du],., = 0 

. -- 
where EI is bown as the flexural rigidity. The closed-form 
solution for Equation ( 5 )  and its boundary conditions has been 
derived by Frisch-Fay [I9621 as follows: 

where p=sin[(y, + a ) / 2 ] ;  

and whereF(p.6) and E ( p , < )  are the Legendre's standard 
form of the fust and second kinds respectively. The modulusp, 
which governs the deflected shape of the fmger, is related to the 
properly of the finger by 

kL. = [F(p,%)-F(pL)] (9) 
The deflected shape of the fmger under a known point force (F, 
a) can be computed as follows: 
1. Calculate k from Equation (6) for a given flexural rigidity. 
2. Solve for the modulep from Equation (9) implicitly: 

g ( p )  = [F(p, %) - F(p, <)I- kL. =O, where 0 < P < 1 

3. Calculate yo fiom Equation (Za), and then C and <(y/ = wo)  

4. The deflected shape of the finger can then be Obtained from 

n.3 General Solution to the Flexible Beam Model 
Since a closed-form solution for the general Equation (1) is 

not available, Equation (2) that governs the shape of the 
deflected finger is solved numerically. For this purpose, we 
rewrite Equation (2) in a standard form: 

from Equations (Sh) and (Sc) respectively. 

Equations (7a) and (7b) respectively. 

e= = f ( u , s , ~ - ) ,  o < U 5 I (10) 
S(0) = a, and @'(I) = 0 

Once the solution of Equation (2) that is essentially a standard 
b o m b  yalue eroblem (BW) is obtained, the fmger shape 
can be computed from the following pair of equations: 

where uo is any value between 0 and 1. Three numerical 
methods, the Shooting, the finite-difference (FD), and the 
finite-element (FE) are discussed as follows. 
Shootine Method 

Equation (IO) is solved numerically using the Shooting 
method [Burden, 19971. The basic idea of the Shooting method 
is to treat the BVP as an initial value problem: 
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6,. = f (U, 90.6;) (12) 
S(0) = a, and q ( 0 )  = E  

where E is a guessed slope at one end of the boundary. The 
guessed value of E can be adjusted by using the 
difference m(&) = 8; (I, E )  - O0 (1). The recursive algorithm is to 
fmd the correct value E with m(&)=O as follows: m: Use$,(O) =a,8;(0) =&(I)  tocalculatem(l). 
&Q: Use O0 (0) = a, 0; (0) = 4 2 )  to calculate m(2).  

m: Use the secant method to obtain the new estimate: 
&(i - 1)- &(i- 2) 
m(r - I )  -m( i -2 )  

&(i)=&(i-l)- . m(i - I) where i=3,4, . . . 

m: Iterate untilI&(i)-&(i-l)15 to / ,  where lo/ is the 
numerical iolerance (or a small positive value governing the 
accuracy of the numerical calculation). 
As shown in tbe above steps, the Shooting method requires 

two initial guesses of the derivatives at one end to iteratively 
estimate the boundary condition at the other end. 

Finite Ditference Model 
The continuous domain U E [OJ] is discretized into (N+I) 

equal intervals with endpoints at U; = ih (where i=O,l,.., N+I); 
each has a length h = 1 /(N + 1) , The derivatives in Equation 
(IO) are then approximated by the central fmite difference 
formula, where tbe exact solution is assumed to have a bounded 
4'derivative to allow for replacing @"(xi)  and8'(xi) : 

1 h2 

1 h2 
S'(ui) = + Awj] - -8 ("(q j )  

2h 6 

@'(Ui) = y [ A w i i l  - A W ~ ] - - ~ ' ( ~ ) ( < ~ )  12 (134 

( 1 3 ~  

h 

where wi = S(ui) , AW; = wi - wi-l . Substituting the above 
central difference approximations into muation (lo), the 
following set o fN  x N finite-difference equations is obtained 

where ~y =rw1 w2 . __  
G(W) =[GI (W) . . .G; (W) . . .GN(W)]T  = 0 (14) 

wN-l  w N I T  

1 Awiwil +Awi Gi(W) = -Ay . ,  +Awi + h'f ui, wi, [ 2h . 

where i = I, 2, ..,, N; and the boundary conditions are 
1 

wo = a  and wN+I =-(4wN - wx- , )  
3 

Newton's method can be used to generate a sequence of 
iterations ((wjk),.,,, wjk),,.., w ; ) ) ~ }  converging to the solution 
of Equation (14). Newton's method solves for vI,v 2r. . . ,vN in 
each of the iterations from the N x N linear system: 

where J is a hi-diagonal Jacobian matrix with the ijfh entry for 
the first (N-I) rows: 

(15) 
T J ( w ~ ,  ..., WN)(VI, ..., vN) =-G(U') 

, i = j - l a n d  j = 2. .... N 
Aw;+l + Awi 

- 1 + - f  1 u j . w ; ,  I '[ 2h 

andfortheflrow: JN,y. ,  =---- 

In each of the iterations, the approximation is updated with 
wy) = w,̂ " + V i  (16) 

Since J is tri-diagonal, Crout factorization algorithm purden, 
19971 can be applied. The convergence is possible provided 
that the following conditions are matched: 

I. The initial guess [ w r ~ , ,  wr'  ...., w c ) p  is suficientiy close 

2. The Jacobian matrix J ( w l , .  .., wi ,..., w N )  is nonsingular. 
to the solution. 

Finite Element Method 
To construct an approximate solution by a fmite-element 

method based on the- kayleigh-Ritz formulation, we recast 
Equation (2) into a weighted-integral form: 

Using the product rule of differentiation, the fmt term in the 
integral can be written as 

wI(u) d d8 - L2 [du - [ d u ) ]  - =-- ;2 [ wI(u)- ---[wI(u)] i z  2 
As a result, Equation (17) is simplified to 

whereQ, = { y  -- and Q, = 
. .  

Consider a beam made up of N two-node elemepts, each of 
which has a length h. The slope 8 of the e' element (e = I, 
2..., NJ is approximated as follows: 

where; U = U  - ue-I E [0, h] is the local coordinate; and 6'; and 

8; are the values of Bat the two end nodes. Upon substituting 
0 from Equation (19) and v j  for winto Equation (IS), we 
obtain the following two algebraic equations for each element: 

K ;  = -Q; 
i=l 

To solve for the shape of the beam, we note the following: 
1. The boundary conditions Q," = 0 and 8, = a. 

2. The continuity at the nodes requires that 0; = OF' = 6, . 
3. The balance of the secondary variable requires that 

Q; +e;" = 0. 
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For a beam of N elements, the following system of N+ 1 process; it is relatively easy to achieve higher-order 
nonlinear equation can be obtained from Equation (20); accuracy. The calculated shape using the Shooting method 

(with 4’b order Runge-Kutta or “ode45” in MATLAB) 
perfectly match those calculated using the Frisch-Fay 
solution. The algorithm converges after 6 iterations. 1 K : T K ? ~  I=[ -iQQ? ]=r:] ’ 0.W5, 

where- B, (e=2 ,  ..., N+1) andQ: are the N+1 unknowns to be 
solved. Note that the 1” equation K: = -Q: is independent of 
the other Nequations that can be solved separately. Once 0, is 

obtained, Q: can then be solved from the 1” equation. 

Ill. SIMULATIONRESULTS 
The objectives of the simulation are (I) to validate the 

numerical .model and (2) to examine the effect of non-uniform 
cross-section on the defected shape of the finger 

Numerical Validation (Uniform Fineer) 
Since exact solution is only available for a uniform beam. 

under a point load at a location, we validate the numerical 
models by comparing the deflected shape of a uniform beam 
against the published solution. Thi simulation parameters are 
listed in Table 1. ‘ 
Table 1 Simulation Darameters (uniform beam) 
EI =0.08 Nm* F=15N N=tO 
L=101.6 mm (4 inches) a= 90” .. .. 

The predicted shape o fa  deflected finger under a point load 
has been computed using~ the three numerical’ methods 
(Shooting, FD and; FE) discussed above: The results are 
compared in Figure2 against those calculated using the small- 
deflection approximation or Equation (4), and the closed-form 
solution given by Frisch and Fay [1962] or Equations (7)-(9). 

-TO1 
0 20 40 60 80 100 

’ x(mm) 
Figure 2 Numerical validations (uniform beain) 

The %erron are compared in Figure 3, which is deiined as 
%error = loo[#-s(exoef)]/s(exocl) 

The following observations can be made from Figure? 2 and 3: 
1. The small deflection approximation fails to predict the shape 

of the finger, especially at the free end of the beam. 
2. The Shooting method requires two initial guesses of P(0) at 

one end (between ‘0 and 1) and its accuracy depinds on the 
scheme solving the ODE generalized in the Shooting 

, , . ,  Q.W a 0.1 0.2 0.3 (1.4 0.5 0.6 0.7 0.8 0.s I 
U 

Figure 3 %Error (N-20 for both FD and FE methods) 
3) The FD and F E  methods (often-referred to as a global 

method) interpolate between nodes, hut are difficult to have 
higber than Znd order accuracy. However, these methods 
satisfy the boundary condition (BC) automatically and thus, 
do not need a recursive algorithm to estimate for the Be, 
which is the hasis of the Shooting method.. The accuracy of 
these two methods depend on the mesh number N: The 
erron for both the FD and FE methods are less than 0.05% 
when N=20 as shown in Figure 3. 

4) The use of Rayleigb-Rim formulation in FE method results 
in Equation (20) containing t e r n :  

where i=I,2. The factor (8e-Be+1)2 in the denominator 
makes it ill-conditioned with a large N as U approaches 1 (i.e. 
the free end of the cantilever). As illustrated in Figure 4 
where %error is computed at N=lOO, the error in the FE 
solution is less than 0.002% for 0 5 U 5 0.8,  and increases 
monotonically to 0.01% at the end of the cantilever. 
. .  

I , ,  

, , I ,  I I , . ,  

1 8 ,  

a 

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 
-2 

U 
Figure 4 %Error (&IO0 for both FD and FE methods) 
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Non-uniform Fineer 
We consider here a fmeer (E4.8MF'a) made UD of three 

different cross-sections. The-first part is a cone of l>mm long 
to provide a relatively rigid base, which is followed by the 
tapering 2" part over a length of 101.76mm (4 inches). The 
last part is elliptical. B e  exponential function that 
approximates I (x )  of the beam as given as follows: 

(22) 
wherea =7.3x104; B=3.65SIxlO4; C=3.2102 x IO-'; a=-0.07087; 
andp-0.14173. JnEquation(22),xism; andIis inm4.  The 
three numerical methods were used to solve for @subject to a 
normal force F=15N at L=76.2mm (3 inches). 

Figure 5 shows the computed @ and the deflected fmger 
shape calculated from Equation (11). Figure 6 compares the 
deflected shape of the non-uniform finger (using the Shooting, 
the FI), and the FE methods) against that of a uniform finger of 
EI=0.08Nmz. The latter has the same slope v0, at which the 
force exerts. As shown in Figure 6, +e non-uniform finger 
offers the same deflection as the uniform fmger at the contact 
point without sacrificing the rigidity near the base. 

I(x) = Aem + Beb + C 

2.3, 

I 

Figure 5 Comparison of computed @ 

J 1 
0 10 20 30 40 50 60 70 

Figure 6 Finger deflection 

IV. APPROXIMATION AND EXPERIMENTAL VALIDATION 
For dynamic analysis and real-time control of a multiple- 

fmger grasper, it is desired that the deflected shape of a non- 
uniform beam can be computed from a closed-form solution. 
For this reason, attempts were made to fmd an appropriate 
effective (flexural rigidity) EI such that the closed-form 
solutiou of Frisch and Fay [I9621 can be applied. 

Calculation of an Effective EI 

beam under the loading (F, a; L) are given as follows: 

x(mm) 

The steps for finding an effective EI of a non-uniform 

~ 
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Step 1: Calculate W. (the slope of the finger at the contict 

Step 2 Calculatep from Equation (Sa). 
Step 3: Calculate k from Equation (9). 
Step 4: From Equation (6) calculate the effective EI, (E&). 
Step 5: The effective EI is given by 

where C,, a correction factor. In general, the ErGtr (computed 
from Step 4) is a function of L, a and F. 

point) from Equation (2b), where @is solved numerically. 

= CBI (EO (23) 

As an illustration, we consider the same finger 
characterized by Equation (22). Figure 7 shows the effective EI 
calculated (from Step 4 of the above computational procedure) 
using the Shooting method for the flexible fmger, E48MF'a 
and I(*) given in Equation (22). Recall that the Shooting 
method requires two initial guesses of O'(0). When F < 30N 
and L < 0.2032m @'(I) falls between 0 and 1; hence the two 
initial guesses were chosen between 0 and 1. When F > 30N, 
the range of the initial guesses is extend to 0 and 2. The 
computed EI is given in Table 2, where a 2" order least square 
method was used to determine the correction factor. 

L (mm) 
Figure 7 Computed E1 as a function of L and a (F=5N) 

Table 2: Example Effective El 
0.07111 < L < 0. I l m  and 50' <a< 90' 
For 2.5'4 < F < 7SN, 

For 7.5N < F < 12.5N 
CEI= 1.2618-3.6425 L+34.589L2+0.1S541a-0.036961a' 

Ce, = 1.6305 - 18.275L + 151.43L2 + 0.32098~- 0.083774a' 
For12.5N < F < 17.SN 

For 17.5N < F < 22.5N 
CEI = 1.9609 - 28.833 L + 2S4.66Lf+ 0.27266~- 0.0909S8az 

C-, = 1.8934 - 27.123 L + 287.33Lz+ 0.10354~- 0.069778~' .. 
where L is in meters; and a is in radians. 

Experimental Results 
To illustrate the methods for determining an effective EI 

that would extend the closed-form solution given by Frisch and 
Fay [I9621 to a non-uniform beam, we evaluate the analytical 
prediction experimentally as shown in Figure 8, where a know 
forcefis applied perpendicular to the x-axis (i.e., a = ii / 2 )  at 
a known location on the finger. Two fingers (manufactured by 
the Waukesha Rubber Company) with identical geometry but 
different materials were used, which has three non-uniform 
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cross-sections along its length; a circular base, a taper, an 
elliptical section to provide rigidity in the z-direction and 
flexibility in the’ x-y plane. The Young module of the fingers 
were determined experimentally (Model 650M by DDL, Inc.) 
Other property of the fmger is given in Table 3. Figure 9 
compares results of two loading conditions between the 
predictions and the measured data, where two predictions were 
made; the Shooting method with an approximate geometry 
characterized b;y Equation (22), and the solution by Friscb and 
Fay [I9621 with an effective E1 given in Table 2. 

Table 3: Fineer oronerties 
P.mmetm Val”- 

Majormdiur,a 12 mm . 
-. Minorradius,b 8.45- , .  

;< 

Figure 8 Loading condition 

20 40 6 0 .  80 100 120 140 460 
x(mm) 

Figure 9 Comparisons against experimental data 

As compared in Figure 9, the numerical solution offers a 
very good prediction when the load is small and, acts at a 
location ‘far from the base. . Closed-form solution. with an 

~ . effective El  provides -a reasonable approximation of..the 
numerical solution around the contact point. The discrepancy 
between the numerical prediction and .the experimental shape 
becomes significant‘as the load is closer to the base, where the 
beam. assumption- (that the y and z dimensions are small as 
compared to the x dimension) is no longer valid. 

. . ~ ’ 

. v. CONCLUSIONS 
Three computational metliods and an approximate model 

. - ..for predicting the deflected shape of a flexible finger have been 
preiented. Both uniform ‘and- non-uniform fingers were 
considered. The methods were numerically. validated by 
compariog the computed results against those obtained using 

. 

the closed-form solutions derived by Frisch and Fay [I9621 
where exact solutions are available for fingers with a uniform 
cross-section. The results show excellent agreement. To extend 
the closed-form solution for predicting the shape of a non- 
uniform finger, we compute numerically an effective El that 
approximates the non-uniform finger as a uniform finger at the 
point of contact. The approximate model bas been examined 
experimentally. Results of the approximate model well match 
those obtained experimentally. 
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